
Addressing the limitations of
Kubernetes' Ingress object

David Cheney  
Staff Engineer, VMware

Abstract: The Kubernetes Ingress object has a number of limitations which over the years have been papered over with annotations. Contour, the Ingress controller my
team at Heptio are building, recently introduced a new Ingress object which addresses the existing limitations and unlocks the ability for teams and operators to have
more control over ingress deployments in multi team and multi tenant scenarios. In this short talk I'll explain the limitations of the current ingress object and how our new
Ingress object addresses those shortcomings while making it possible for multiple teams to collaborate and delegate responsibility using various routing patterns and
strategies that our new Ingress object makes possible.

g’day

My name is David, I’m a software engineer from Sydney, where I work for VMware.

I’m the tech lead on a product called Contour, an kubernetes ingress controller using Lyft’s Envoy as our data plane.

Ingress-what
controller?

The part of kubernetes that I spend my time in is something called an ingress controller.

Ingress controllers is responsible for getting traffic from the outside world down to your pods.

But practical terms; HTTP, TLS, load balancers, reverse proxies all at Layer 7.

To be clear, although we use Envoy for our data plane, Contour is not an service mesh, we’re focused exclusively on the ingress problems of bringing remote traffic into
your cluster.

A good ingress controller should
take care of the 90% use case for

deploying HTTP middleware

That’s quite a broad remit so the way I approach the design space is I think that a good ingress controller should take care of 90% of the cases that traditionally you
would have used an apache, or nginx, or squid, sidecar container or middleware, something in the request flow to your app.

Getting to the 90% case

•Traffic consolidation

•TLS management

•Abstract configuration

•Path based routing

Here are some things that I think contribute to an ingress controller getting to that 90% level of functionality.

The first one is consolidation. If you use a service load balancer then every service you deploy has an ELB in front of it, that’s a cost, and also a maintenance issue. They
consume a public IP which are a scarce resource, and depending on your company your security team may not be cool with hundreds of public IPs funnelling trading into
their kubernetes cluster.

The second is TLS management. It’s 2018, you need to be talking TLS. Chrome 68 is out and non https sites “insecure”. We have projects like cert manager and lets
encrypt that take care of obtaining a certificate, and an ingress controller covers presenting that certificate on port 443, so there shouldn’t be any reason to not be secure
in 2018.

The third is a notion of being able to describe the properties of your web application in an abstract manner, or at least to have some portability between different ingress
controllers (and clouds). You should be able to talk about the host name, tls configuration, route names and backends for those routes without having to write an apache
configuration, or an nginx configuration.

Path based routing; with a service, all the traffic goes straight to the cluster IP, if you wanted to serve your static images from one service, and your dynamic data from
another, you can’t do that with a service.

What is Contour?

So what is contour?

Contour is an ingress controller that I’ve built at Heptio, now VMware. We use Lyft’s envoy proxy as our data plane

Contour exists to fulfil the requirements I just described.

I want to be clear that this talk isn’t a product pitch — well it is — but it’s not for contour.

The fact that the stuff I’m going to talk to you about is implemented in contour is incidental

What are the problems with
Ingress?

Instead what I want to talk about is something that is larger than any of the ingress controllers out there in the market. And that is the ingress object.

So, Let’s talk about the problems with the current Ingress object.

“SPECIFICIATION"

I think my biggest complaint with ingress is the “specification” is a bunch of text in comments on the api data structure. JSON is not a specification; it’s barely a schema.

This is literally the specification implementors have to work from.

This is perfectly fine for someone who needs a schema to send a message to the k8s API server, but as an implementor, or someone building tools on top of this API, we
need a level of formality that just isn’t there.

What I would like to see is something akin to the level of detail of an RFC, because there are, as we’ll see, the ingress ‘spec’ is rife with ambiguity,

Gosh darned default backend

Take for example the default backend.

“A default backend capable of
servicing requests that don't

match any rule.”

This is what the “spec” says about the default backend. This is _all_ it says.

What we have is a situation where each ingress document has a notion of default backend. Requests that don’t match any rule are routed to the default backend

This would make sense if there is only ever one single ingress document, but that is almost never the case, also as we’ll see routes can fail to match for reasons other
than the path.

So this idea of a default backend is not a catch all route on your vhost, its something else. But that something is left to the interpretation of the implementor, to the
detriment of ingress users expecting portability.

Default backend ambiguity

• Default backend conflates the notion of a vhost, the
Host: header traffic arrives on, from the backend to
serve it

• The host key in spec.rules is optional — does this
mean the rule matches any host? ¯_(ಠ_ಠ)_/¯

• Default backend can be present in multiple Ingress
objects — which takes precedence?

Default backend conflates …

A default vhost is a notion of a http handler for traffic that fails all other routing rules — that needn’t be a backend, it could be a simple 302 redirect

Host key is optional …

Default backend present in multiple—all?—ingress objects, which takes precedence? Should they be merged together? That’s a bit tricky because the default backend is
a service, not something you can do a route match on.

And this ambiguity suggests that a default backend can be namespaced because ingress objects can be namespaces, but of course that doesn’t work.

Ingress objects can span
namespaces

Speaking of namespaces, the ingress spec permits the definition of a virtual host to span more than one ingress object.

I can see the argument for this; ingress objects can only use services in the same namespace, but what if you want to have /finance managed in the finance namespace
and /ads in the ads namespace? You do this by putting part of the vhost definition in the finance namespace and part of the vhost definition in the ads namespace. They
both refer to the same virtual host, so the ingress controller stitches them all together for you.

However, this means that if someone has RBAC permission to add an ingress object in their namespace, they can inject a route onto the ingress you defined in your
namespace even if they never had permission to edit your ingress route!

Cert-manager relies on this
feature to support Let’s

Encrypt’s HTTP-01 
challenge!

And just in case you were thinking — hmm this sounds like a massive security hole, I’d like to disable this please — you cannot because in a perfect example of Hyrum’s
Law, projects like Kube lego and cert-manager rely on the ability to inject a route onto your vhost from another namespace so they can route the HTTP-01 challenge to a
service running in their namespace

Ingress makes shared tenancy
difficult if your tenants aren’t

incentivised to play nicely with
each other

What this boils down too is Ingress is very difficult to use in a shared kubernetes cluster.

There are no safeguards to prevent anyone with RBAC permission to create or edit ingress objects from accidentally, or maliciously, injecting conflicting or invalid
configuration onto the vhost for another tenant.

One route. One Service.

Lets talk about some other problems with the ingress spec that affect people trying to use the modern web application patterns.

Kubernetes services are mapped onto http routes via an ingress document, however the ingress spec only permits _one_ service per route.

Now a kubernetes service can match multiple pods if they share the same label, they’ll all get mixed into the same endpoint document, but at best you’re going to get a
weighted distribution across the deployments that make up the service.

If you want to send 1% of your traffic to the new version of your application, you’ll need to have 99 pods running the old version of your app to make the ratios work out.

Annotation potpourri

Another big problem with the ingress spec is the schema is so limited the only place you can stuff extra parameters or attributes about your web application is in
annotations

Cambrian explosion of Ingress annotations

• Allow port 80 and/or 301 upgrade to HTTPS

• Request timeout (applies to all the entries in the Ingress
document)

• Retry parameters (also applies to all entries in the Ingress
document)

• TLS minimum protocol version

• Websocket enabled routes

This has lead to a Cambrian explosion of ingress document annotations.

here are just some that contour implements, this is barely scratching the surface of what has been shoehorned into an untyped map of annotations by various ingress
controllers.

If this Lassa fair approach wasn’t bad enough, the configuration of a vhost may be spread across several ingress documents, so how these annotations are applied is
confusing

301 upgrade settings, request timeouts and retry parameters likely apply per ingress document not per vhost, therefore if you want those settings to apply to some routes
and not to others for a vhost, you have to split them across two ingress documents

TLS minimum protocol version has to be specified in an annotation because the TLS stanza of the ingress document has no place for it; same with cipher specs.

if you split a host across several ingress documents, do things like TLS min protocol apply to all the ingresses that match that host, or just the one where the annotation
is present? There is no right answer here. If you say TLS min proto applies only to the ingress spec in a single document, you’re committing to altering the TLS
handshaking operation based on the request line of the HTTP request which you don’t have at that point.

If you say that annotations like TLS min proto apply across any ingress with that host, because ingresses can span namespaces, someone in another namespace can
alter the TLS parameters for your virtual host even though they don’t have permission to write into your namespace.

Ingress isn’t broken, it’s just
limited

I want to take a moment to say that while I personally have a bunch of gripes with Ingress coming from my position as an implementor, ingress isn’t broken.

I don’t want you to come away fro this talk thinking “welp, dave says I can’t use that at all”

Ingress isn’t broken, it’s just limited, and if you’re not hitting those limits then far be it from me to tell you need to change what you’re doing.

What is Contour going to do
about these problems?

However if you have experienced some of these problems, then let me tell you about what we’re doing in contour to try to improve the situation.

At the start of the year, when we were still called Heptio, we signed a joint development deal with Yahoo Japan to build them a large load balancing solution for them
using a kubernetes cluster almost like an appliance.

Ingress IngressRoute

Realising that yahoo Japan were encountering many of the issues with multi tenancy that I described above we set out to define a new kind of ingress document, which
we call ingressroute

Every IngressRoute document
has one hostname

The first thing that we changed is each ingress route document refers to one hostname and one hostname only.

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: blog
 namespace: marketing
spec:
 virtualhost:
 fqdn: blog.heptio.com
 tls:
 secretName: blog-secret
 routes:
 - match: /
 services:
 - name: blog-svc
 port: 80

The virtualhost key indicates
this is a root ingressroute

This means all the properties of a virtual host, its name, its tls parameters, the secret that holds the tls certificate are in one namespace alone.

We call this the ingress route document a root, for reasons I’ll explain in a little bit

Load balancing strategies can be
specified per backend service

Because we’re no longer limited to the schema of the kubernetes ingress object we now have a place to hang configuration attributes that used to be smuggled into
annotations.

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: blog
 namespace: marketing
spec:
 virtualhost:
 fqdn: blog.heptio.com
 tls:
 secretName: blog-secret
 routes:
 - match: /blog
 services:
 - name: blog-svc
 port: 80
 strategy: WeightedLeastRequest

For this route, use
WeightedLeastRequest
across the endpoints
matching blog-svc

For example, per route, per service, you can control the load balancing strategy that will be used across the endpoints that make up this service.

Websocket support

A key reasons for choosing Envoy as our data plane was Envoy’s support of long running websocket sessions across configuration changes.

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: chat
 namespace: default
spec:
 virtualhost:
 fqdn: chat.example.com
 routes:
 - match: /
 services:
 - name: chat-app
 port: 80
 - match: /websocket
 enableWebsockets: true
 services:
 - name: chat-app
 port: 80

Only permit 
Upgrade: websocket 

on /websocket

Enabling websocket support per route is as simple as adding the enableWebsockets: true key to your route.

In general where something can be enabled for all use cases rather than having a parameter or flag that people have to know to turn on, my policy is to turn it on across
the board; http compression is a good example of this.

However I wasn’t comfortable permitting Upgrade: websocket by default for all routes, so we made a deliberate decision to make it opt in only.

Multiple service backends

The kubernetes ingress document limits routes to a single backend service. Using ingressroute we have the ability to say instead of a single service, allow a list of
services.

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: blog
 namespace: marketing
spec:
 virtualhost:
 fqdn: blog.heptio.com
 tls:
 secretName: blog-secret
 routes:
 - match: /
 services:
 - name: service1
 port: 8080
 - name: service2
 port: 8080

Traffic will be load balanced
across service1 and service2

Weighted services

The main reason you’d want to have more than one backend service per route is to enable patterns like canary deploys or blue/green deployments

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: gmail
 namespace: google
spec:
 virtualhost:
 fqdn: gmail.google.com
 routes:
 - match: /
 services:
 - name: gmail-v1.3.1
 port: 80
 weight: 90
 - name: gmail-v2.0.0
 port: 80
 weight: 10

Shift traffic from 
v1.3.1 to v2.0.0 by altering

the service weights

In this example, 90% of the requests to gmail.google.com are routed to the version 1.3.1 and 10% are routed to version 2.0.0. As you gain confidence in the the
deployment you can edit the document to increase the weighting towards version 2.

And of course, weighting, load balancing strategy, websockets, etc can be combined per service, per route, depending on your applications needs.

It’s important to note that modifying the weights triggers an immediate shift of traffic pattern in Envoy (via Contour).

Delegation

Delegation is our answer to helping multi tenant clusters stay managable.

All the ingressroute documents we’ve seen so far are what we call “root documents”, because they are at the root of a delegation tree.

To explain why we think delegation is powerful let me lay out a scenario for you.

https://google.com/finance

• You want to delegate control of  
https://google.com/finance to the Google Finance
developers working the google-finance namespace.

• The Google Finance team should not be able to alter the
configuration for the rest of https://google.com/

• None of the teams working on https://google.com/ should
have access to the TLS secret for https://google.com/

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: google-com
 namespace: google
spec:
 virtualhost:
 fqdn: google.com
 tls:
 secret: google-com-secret
 routes:
 - match: /
 delegate:
 name: search
 namespace: google-search
 - match: /finance
 delegate:
 name: finance
 namespace: google-finance

The configuration for /
finance is found in the

finance/finance ingressroute

In this example we have a standard ingressroute root; its for google.com, and references google-com-secret in the google namespace.

However all the routes, / and /finance refer to ingressroute documents in other namespaces. You can think of this as an “include” macro, contour will find the
configuration fragment for the search service in the search namespace, and the finance service in the finance namespace.

Let’s have a look at finance

apiVersion: contour.heptio.com/v1beta1
kind: IngressRoute
metadata:
 name: finance
 namespace: google-finance
spec:
 routes:
 - match: /finance
 services:
 name: finance-v1.0.1
 port: 8080

Only routes that are a sub
match of /finance

Here is the finance ingressroute document.

It does not have a virtual host stanza, which means it is not a root. It is a delegate and can only be referenced by other ingressroute documents that delegate to it
explicitly. And contour is only going to reference routes that start with the prefix that was delegated too

DNS example

Restricted root namespaces

The final piece of the multi tenant puzzle is the ability to restrict the namespaces that contour will look for ingressroute roots.

This is an opt in feature, by default anyone with RBAC permission to create an ingressroute can do so, but if you want to make creating a new root a administrative event,
you can configure contour to only look for roots in a set of namespaces which you have arranged that only administrators can write too.

Are you going to upstream
Ingressroute?

I’m sure the first question out of your mouths is going to be, are you planning on upstreaming this work?

Well … it’s complicated

And the answer is it’s complicated.

One analogy to explain my thinking about this is climate change.

There is universal agreement, at least from people who pay attention, that climate change is a serious problem.

However, the solutions are scattered, the political will and consensus is just not there yet.

I don’t think that there is much disagreement that the current Kubernetes Ingress object is a dead end, but I’m not seeing any strong movement upstream to replace
Ingress.

I’m sure they’re well aware of the problem, but there are bigger problems in kubernetes, and this isn’t the pot boiling over at the moment

Maybe in the future when people on sig-networking are seriously discussing a replacement for Ingress it’ll be the time to propose something based on our work, but my
feeling is that now isn’t that time

But …

Would you prefer to integrate
IngressRoute into your Ingress

controllers?

Contour has a thing called the DAG which abstracts away both the k8s API server, and the downstream Envoy configuration.

A DAG is built from objects k8s objects, and Contour walks over the DAG to produce the various configuration tables Envoy needs.

So one option is to expose Contour’s DAG as a library, so that other ingress controllers can use it. If they write visitors for the dag that produce configuration that Traefic
or nginx then they would get ingress route support for free because at the level the DAG works at, the two ingress types are abstracted away

Thank you!
☞ github.com/heptio/contour

☞ #contour on the k8s slack  
☞ cheneyd@vmware.com

Image: Egon Elbre

Thank you for your time.

If you want to talk to me about anything I’ve said here, ingress, kubernetes, or go, come find me, I’ve got stickers for a company which won’t exist in a week, so they
might be worth something as antiques.

mailto:cheneyd@vmware.com

